JEE MAIN - Mathematics (2022 - 28th July Morning Shift - No. 15)
The minimum value of the twice differentiable function $$f(x)=\int\limits_{0}^{x} \mathrm{e}^{x-\mathrm{t}} f^{\prime}(\mathrm{t}) \mathrm{dt}-\left(x^{2}-x+1\right) \mathrm{e}^{x}$$, $$x \in \mathbf{R}$$, is :
$$-\frac{2}{\sqrt{\mathrm{e}}}$$
$$-2 \sqrt{\mathrm{e}}$$
$$-\sqrt{\mathrm{e}}$$
$$\frac{2}{\sqrt{\mathrm{e}}}$$
Explanation
$$f(x) = \int\limits_0^x {{e^{x - t}}f'(t)dt - ({x^2} - x + 1){e^x}} $$
$$f(x) = {e^x}\int\limits_0^x {{e^{ - t}}f'(t)dt - ({x^2} - x + 1){e^x}} $$
$${e^{ - x}}f(x) = \int\limits_0^x {{e^{ - t}}f'(t)dt - ({x^2} - x + 1)} $$
Differentiate on both side
$${e^{ - x}}f'(x) + ( - f(x){e^{ - x}}) = {e^{ - x}}f'(x) - 2x + 1$$
$$f(x) = {e^x}(2x - 1)$$
$$f'(x) = {e^x}(2) + {e^x}(2x - 1)$$
$$ = {e^x}(2x + 1)$$
$$x = - {1 \over 2}$$
$$f''(x) = {e^x}(2) + (2x + 1){e^x}$$
$$ = {e^x}(2x + 3)$$
For $$x = - {1 \over 2}\,\,f''(x) > 0$$
$$\Rightarrow$$ Maxima
$$\therefore$$ Max. $$ = {e^{ - {1 \over 2}}}( - 1 - 1)$$
$$\therefore$$ $$ - {2 \over {\sqrt e }}$$
Comments (0)
