JEE MAIN - Mathematics (2022 - 28th July Evening Shift - No. 4)
$$
\text { Let } f(x)=a x^{2}+b x+c \text { be such that } f(1)=3, f(-2)=\lambda \text { and } $$ $$f(3)=4$$. If $$f(0)+f(1)+f(-2)+f(3)=14$$, then $$\lambda$$ is equal to :
$$-$$4
$$\frac{13}{2}$$
$$\frac{23}{2}$$
4
Explanation
$$f(1) = a + b + c = 3$$ ..... (i)
$$f(3) = 9a + 3b + c = 4$$ .... (ii)
$$f(0) + f(1) + f( - 2) + f(3) = 14$$
OR $$c + 3 + (4a - 2b + c) + 4 = 14$$
OR $$4a - 2b + 2c = 7$$ ..... (iii)
From (i) and (ii) $$8a + 2b = 1$$ ..... (iv)
From (iii) $$ - (2) \times $$ (i)
$$ \Rightarrow 2a - 4b = 1$$ ..... (v)
From (iv) and (v) $$a = {1 \over 6},\,b = {{ - 1} \over 6}$$ and $$c = 3$$
$$f( - 2) = 4a - 2b + c$$
$$ = {4 \over 6} + {2 \over 6} + 3 = 4$$
Comments (0)
