JEE MAIN - Mathematics (2022 - 28th July Evening Shift - No. 1)

$$ \text { Let } S=\left\{x \in[-6,3]-\{-2,2\}: \frac{|x+3|-1}{|x|-2} \geq 0\right\} \text { and } $$

$$T=\left\{x \in \mathbb{Z}: x^{2}-7|x|+9 \leq 0\right\} \text {. } $$

Then the number of elements in $$\mathrm{S} \cap \mathrm{T}$$ is :

7
5
4
3

Explanation

$$|{x^2}| - 7|x| + 9 \le 0$$

$$ \Rightarrow |x| \in \left[ {{{7 - \sqrt {13} } \over 2},{{7 + \sqrt {13} } \over 2}} \right]$$

As $$x \in Z$$

So, x can be $$ \pm \,2, \pm \,3, \pm \,4, \pm \,5$$

Out of these values of x,

$$x = 3, - 4, - 5$$

satisfy S as well

$$n(S \cap T) = 3$$

Comments (0)

Advertisement