JEE MAIN - Mathematics (2022 - 27th June Morning Shift - No. 9)
If $${{dy} \over {dx}} + {{{2^{x - y}}({2^y} - 1)} \over {{2^x} - 1}} = 0$$, x, y > 0, y(1) = 1, then y(2) is equal to :
$$2 + {\log _2}3$$
$$2 + {\log _3}2$$
$$2 - {\log _3}2$$
$$2 - {\log _2}3$$
Explanation
$${{dy} \over {dx}} + {{{2^{x-y}}({2^y} - 1)} \over {{2^x} - 1}}=0$$, x, y > 0, y(1) = 1
$${{dy} \over {dx}} = - {{{2^x}({2^y} - 1)} \over {{2^y}({2^x} - 1)}}$$
$$\int {{{{2^y}} \over {{2^y} - 1}}dy = - \int {{{{2^x}} \over {{2^x} - 1}}dx} } $$
$$ = {{{{\log }_e}({2^y} - 1)} \over {{{\log }_e}2}} = - {{{{\log }_e}({2^x} - 1)} \over {{{\log }_e}2}} + {{{{\log }_e}c} \over {{{\log }_e}2}}$$
$$ = |({2^y} - 1)({2^x} - 1)| = c$$
$$\because$$ $$y(1) = 1$$
$$\therefore$$ $$c = 1$$
$$ = |({2^y} - 1)({2^x} - 1)| = 1$$
For $$x = 2$$
$$|({2^y} - 1)3| = 1$$
$${2^y} - 1 = {1 \over 3} \Rightarrow 2y = {4 \over 3}$$
Taking log to base 2.
$$\therefore$$ $$y = 2 - {\log _2}3$$
Comments (0)
