JEE MAIN - Mathematics (2022 - 27th June Morning Shift - No. 21)
Let
$${A_1} = \left\{ {(x,y):|x| \le {y^2},|x| + 2y \le 8} \right\}$$ and
$${A_2} = \left\{ {(x,y):|x| + |y| \le k} \right\}$$. If 27 (Area A1) = 5 (Area A2), then k is equal to :
Answer
6
Explanation
Required area (above x-axis)
$${A_1} = 2\int\limits_0^4 {\left( {{{8 - x} \over 2} - \sqrt x } \right)dx} $$
$$ = 2\left( {16 - {{16} \over 4} - {8 \over {3/2}}} \right) = {{40} \over 3}$$
and $${A_2} = 4\left( {{1 \over 2}\,.\,{k^2}} \right) = 2{k^2}$$
$$\therefore$$ $$27\,.\,{{40} \over 3} = 5\,.\,(2{k^2})$$
$$\Rightarrow$$ k = 6
Comments (0)
