JEE MAIN - Mathematics (2022 - 27th June Morning Shift - No. 20)
Explanation
Given Binomial Expansion
$$ = {\left( {{{\sqrt x } \over {{5^{{1 \over 4}}}}} + {{\sqrt x } \over {{5^{{1 \over 3}}}}}} \right)^{60}}$$
$$\therefore$$ General term
$${T_{r + 1}} = {}^{60}{C_r}\,.\,{\left( {{{{x^{1/2}}} \over {{5^{1/4}}}}} \right)^{60 - r}}\,.\,{\left( {{{{5^{1/2}}} \over {{x^{1/3}}}}} \right)^r}$$
$$ = {}^{60}{C_r}\,.\,{5^{\left( {{r \over 4} - 15 + {r \over 2}} \right)}}\,.\,{x^{\left( {30 - {r \over 2} - {r \over 3}} \right)}}$$
$$ = {}^{60}{C_r}\,.\,{5^{\left( {{{3r - 60} \over 4}} \right)}}\,.\,{x^{\left( {{{180 - 5r} \over 6}} \right)}}$$
For x10 term,
$${{180 - 5r} \over 6} = 10$$
$$ \Rightarrow 5r = 120$$
$$ \Rightarrow r = 24$$
$$\therefore$$ Coefficient of $${x^{10}} = {}^{60}{C_{24}}\,.\,{5^{\left( {{{3 \times 24 - 60} \over 4}} \right)}}$$
$$ = {}^{60}{C_{24}}\,.\,{5^3}$$
$$ = {{60!} \over {24!\,\,36!}}\,.\,{5^3}$$
It is given that,
$${{60!} \over {24!\,\,36!}}\,.\,{5^3} = {5^k}\,.\,l$$ ...... (1)
Also given that, l is coprime to 5 means l can't be multiple of 5. So we have to find all the factors of 5 in 60!, 24! and 36!
[Note : Formula for exponent or degree of prime number in n!.
Exponent of p in $$n! = \left\lceil {{n \over p}} \right\rceil + \left\lceil {{n \over {{p^2}}}} \right\rceil + \left\lceil {{n \over {{p^3}}}} \right\rceil + $$ ..... until 0 comes
here p is a prime number. ]
$$\therefore$$ Exponent of 5 in 60!
$$= \left\lceil {{{60} \over 5}} \right\rceil + \left\lceil {{{60} \over {{5^2}}}} \right\rceil + \left\lceil {{{60} \over {{5^3}}}} \right\rceil + $$ .....
$$ = 12 + 2 + 0 + $$ .....
$$ = 14$$
Exponent of 5 in 24!
$$ = \left\lceil {{{24} \over 5}} \right\rceil + \left\lceil {{{24} \over {{5^2}}}} \right\rceil + \left\lceil {{{24} \over {{5^3}}}} \right\rceil + $$ ......
$$ = 4 + 0 + 0$$ ......
$$ = 4$$
Exponent of 5 in 36!
$$ = \left\lceil {{{36} \over 5}} \right\rceil + \left\lceil {{{36} \over {{5^2}}}} \right\rceil + \left\lceil {{{36} \over {{5^3}}}} \right\rceil + $$ .......
$$ = 7 + 1 + 0$$ ......
$$ = 8$$
$$\therefore$$ From equation (1), exponent of 5 overall
$${{{5^{14}}} \over {{5^4}\,.\,{5^8}}}\,.\,{5^3} = {5^k}$$
$$ \Rightarrow {5^5} = {5^k}$$
$$ \Rightarrow k = 5$$
Comments (0)
