JEE MAIN - Mathematics (2022 - 27th June Morning Shift - No. 18)

If the sum of all the roots of the equation

$${e^{2x}} - 11{e^x} - 45{e^{ - x}} + {{81} \over 2} = 0$$ is $${\log _e}p$$, then p is equal to ____________.
Answer
45

Explanation

Given that

$$e^{2 x}-11 e^x-45 e^{-x}+\frac{81}{2}=0 $$

$$\Rightarrow 2 e^{3 x}-22 e^{2 x}-90+81 e^x=0 $$

$$\Rightarrow 2\left(e^x\right)^3-22\left(e^x\right)^2+81 e^x-90=0$$

Let $ e^x=y$

$$ \Rightarrow 2 y^3-22 y^2+81 y-90=0 $$

Product of roots $\left(y_1, y_2, y_3\right)$

$$ y_1 \cdot y_2 \cdot y_3=\frac{-(-90)}{2}=45 $$

Let $x_1, x_2$, and $x_3$ be roots of given equation

$$\Rightarrow e^{x_1} \cdot e^{x_2} \cdot e^{x_3} = 45 $$

$$\Rightarrow e^{x_1+x_2+x_3} =45$$

$$\Rightarrow x_1+x_2+x_3 =\log _e 45=\log _e p $$

$$\Rightarrow p = 45$$

Comments (0)

Advertisement