JEE MAIN - Mathematics (2022 - 27th June Morning Shift - No. 1)
Explanation
$$\overline z = i{z^2}$$
Let $$z = x + iy$$
$$x - iy = i({x^2} - {y^2} + 2xiy)$$
$$x - iy = i({x^2} - {y^2}) - 2xy$$
$$\therefore$$ $$x = - 2yx$$ or $${x^2} - {y^2} = - y$$
$$x = 0$$ or $$y = - {1 \over 2}$$
Case - I
$$x = 0$$
$$ - {y^2} = - y$$
$$y = 0,\,\,1$$
Case - II
$$y = - {1 \over 2}$$
$$ \Rightarrow {x^2} - {1 \over 4} = {1 \over 2} \Rightarrow x = \pm {{\sqrt 3 } \over 2}$$
$$x = \left\{ {0,i,{{\sqrt 3 } \over 2} - {i \over 2},{{ - \sqrt 3 } \over 2} - {i \over 2}} \right\}$$
Area of polygon $$ = {1 \over 2}\left| {\matrix{ 0 & 1 & 1 \cr {{{\sqrt 3 } \over 2}} & {{{ - 1} \over 2}} & 1 \cr {{{ - \sqrt 3 } \over 2}} & {{{ - 1} \over 2}} & 1 \cr } } \right|$$
$$ = {1 \over 2}\left| { - \sqrt 3 \,\,\, - {{\sqrt 3 } \over 2}} \right| = {{3\sqrt 3 } \over 4}$$
Comments (0)
