JEE MAIN - Mathematics (2022 - 27th June Evening Shift - No. 9)

The shortest distance between the lines

$${{x - 3} \over 2} = {{y - 2} \over 3} = {{z - 1} \over { - 1}}$$ and $${{x + 3} \over 2} = {{y - 6} \over 1} = {{z - 5} \over 3}$$, is :
$${{18} \over {\sqrt 5 }}$$
$${{22} \over {3\sqrt 5 }}$$
$${{46} \over {3\sqrt 5 }}$$
$$6\sqrt 3 $$

Explanation

$${L_1}:{{x - 3} \over 2} = {{y - 2} \over 3} = {{z - 1} \over { - 1}}$$

$${L_2}:{{x + 3} \over 2} = {{y - 6} \over 1} = {{z - 5} \over 3}$$

Now, $$\overrightarrow p \times \overrightarrow q = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 2 & 3 & { - 1} \cr 2 & 1 & 3 \cr } } \right| = 10\widehat i - 8\widehat j - 4\widehat k$$

and $${\overrightarrow a _2} - {\overrightarrow a _1} = 6\widehat i - 4\widehat j - 4\widehat k$$

$$\therefore$$ $$S.D. = \left| {{{60 + 32 + 16} \over {\sqrt {100 + 64 + 16} }}} \right| = {{108} \over {\sqrt {180} }} = {{18} \over {\sqrt 5 }}$$

Comments (0)

Advertisement