JEE MAIN - Mathematics (2022 - 27th June Evening Shift - No. 6)
$$(({\tan ^{ - 1}}y) - x)dy = (1 + {y^2})dx$$ passes through the point (1, 0), then the abscissa of the point on the curve whose ordinate is tan(1), is
Explanation
$$\left( {({{\tan }^{ - 1}}y) - x} \right)dy = (1 + {y^2})dx$$
$${{dx} \over {dy}} + {x \over {1 + {y^2}}} = {{{{\tan }^{ - 1}}y} \over {1 + {y^2}}}$$
$$I.F. = {e^{\int {{1 \over {1 + {y^2}}}dy} }} = {e^{{{\tan }^{ - 1}}y}}$$
$$\therefore$$ Solution
$$x.\,{e^{{{\tan }^{ - 1}}y}} = \int {{{{e^{{{\tan }^{ - 1}}y}}{{\tan }^{ - 1}}y} \over {1 + {y^2}}}dy} $$
Let $${e^{{{\tan }^{ - 1}}y}} = t$$
$${{{e^{{{\tan }^{ - 1}}y}}} \over {1 + {y^2}}} = dt$$
$$ = x{e^{{{\tan }^{ - 1}}y}} = \int {\ln tdt = t\ln t - t + c} $$
$$\therefore$$ $$ = x{e^{{{\tan }^{ - 1}}y}} = {e^{{{\tan }^{ - 1}}y}}{\tan ^{ - 1}}y - {e^{{{\tan }^{ - 1}}y}} + c$$ ..... (i)
$$\because$$ It passes through (1, 0) $$\Rightarrow$$ c = 2
Now put y = tan1, then
$$ex = e - e + 2$$
$$ \Rightarrow x = {2 \over e}$$
Comments (0)
