JEE MAIN - Mathematics (2022 - 27th June Evening Shift - No. 2)
If a1, a2, a3 ...... and b1, b2, b3 ....... are A.P., and a1 = 2, a10 = 3, a1b1 = 1 = a10b10, then a4 b4 is equal to -
$${{35} \over {27}}$$
1
$${{27} \over {28}}$$
$${{28} \over {27}}$$
Explanation
a1, a2, a3 .... are in A.P. (Let common difference is d1)
b1, b2, b3 .... are in A.P. (Let common difference is d2)
and a1 = 2, a10 = 3, a1b1 = 1 = a10b10
$$\because$$ a1b1 = 1
$$\therefore$$ b1 = $${1 \over 2}$$
a10b10 = 1
$$\therefore$$ b10 = $${1 \over 3}$$
Now, a10 = a1 + 9d1 $$\Rightarrow$$ d1 = $${1 \over 9}$$
b10 = b1 + 9d2 $$\Rightarrow$$ d2 = $${1 \over 9}$$$$\left[ {{1 \over 3} - {1 \over 2}} \right]$$ = $$-$$ $${{1 \over {54}}}$$
Now, a4 = 2 + $${{3 \over {9}}}$$ = $${{7 \over {3}}}$$
b4 = $${{1 \over {2}}}$$ $$-%$$ $${{3 \over {54}}}$$ = $${{4 \over {9}}}$$
$$\therefore$$ a4b4 = $${{28 \over {27}}}$$
Comments (0)
