JEE MAIN - Mathematics (2022 - 27th June Evening Shift - No. 11)
The mean and variance of the data 4, 5, 6, 6, 7, 8, x, y, where x < y, are 6 and $${9 \over 4}$$ respectively. Then $${x^4} + {y^2}$$ is equal to :
162
320
674
420
Explanation
Mean $$ = {{4 + 5 + 6 + 6 + 7 + 8 + x + y} \over 8} = 6$$
$$\therefore$$ $$x + y = 12$$ ..... (i)
And variance
$$ = {{{2^2} + {1^2} + {0^2} + {0^2} + {1^2} + {2^2} + {{(x - 6)}^2} + {{(y - 6)}^2}} \over 8}$$
$$ = {9 \over 4}$$
$$\therefore$$ $${(x - 6)^2} + {(y - 6)^2} = 8$$ ..... (ii)
From (i) and (ii)
x = 4 and y = 8
$$\therefore$$ $${x^4} + {y^2} = 320$$
Comments (0)
