JEE MAIN - Mathematics (2022 - 27th June Evening Shift - No. 10)
Explanation
$$\because$$ $$\overrightarrow a $$ and $$\overrightarrow b $$ be the vectors along the diagonals of a parallelogram having area 2$$\sqrt2$$.
$$\therefore$$ $${1 \over 2}|\overrightarrow a \times \overrightarrow b | = 2\sqrt 2 $$
$$|\overrightarrow a ||\overrightarrow b |\sin \theta = 4\sqrt 2 $$
$$ \Rightarrow |\overrightarrow b |\sin \theta = 4\sqrt 2 $$ ..... (i)
and $$|\overrightarrow a \,.\,\overrightarrow b | = |\overrightarrow a \times \overrightarrow b |$$
$$|\overrightarrow a ||\overrightarrow b |\cos \theta = |\overrightarrow a ||\overrightarrow b |\sin \theta $$
$$ \Rightarrow \tan \theta = 1$$
$$\therefore$$ $$\theta = {\pi \over 4}$$
By (i) $$|\overrightarrow b | = 8$$
Now $$\overrightarrow c = 2\sqrt 2 (\overrightarrow a \times \overrightarrow b ) - 2\overrightarrow b $$
$$ \Rightarrow \overrightarrow c \,.\,\overrightarrow b = - 2|\overrightarrow b {|^2} = - 128$$ ...... (ii)
and $$\overrightarrow c \,.\,\overrightarrow c = 8|\overrightarrow a \times \overrightarrow b {|^2} + 4|\overrightarrow b {|^2}$$
$$ \Rightarrow |\overrightarrow c {|^2} = 8.32 + 4.64$$
$$ \Rightarrow |\overrightarrow c | = 16\sqrt 2 $$ ..... (iii)
From (ii) and (iii)
$$|\overrightarrow c ||\overrightarrow b |\cos \alpha = - 128$$
$$ \Rightarrow \cos \alpha = {{ - 1} \over {\sqrt 2 }}$$
$$\alpha = {{3\pi } \over 4}$$
Comments (0)
