JEE MAIN - Mathematics (2022 - 27th July Morning Shift - No. 21)
Let $$S$$ be the set containing all $$3 \times 3$$ matrices with entries from $$\{-1,0,1\}$$. The total number of matrices $$A \in S$$ such that the sum of all the diagonal elements of $$A^{\mathrm{T}} A$$ is 6 is ____________.
Answer
5376
Explanation
Sum of all diagonal elements is equal to sum of square of each element of the matrix.
i.e., $$A = \left[ {\matrix{ {{a_1}} & {{a_2}} & {{a_3}} \cr {{b_1}} & {{b_2}} & {{b_3}} \cr {{c_1}} & {{c_2}} & {{c_3}} \cr } } \right]$$
then $${t_r}\,(A\,.\,{A^T})$$
$$ = a_1^2 + a_2^2 + a_3^2 + b_1^2 + b_2^2 + b_3^2 + c_1^2 + c_2^2 + c_3^2$$
$$\because$$ $${a_i},{b_i},{c_i} \in \{ - 1,0,1\} $$ for $$i = 1,2,3$$
$$\therefore$$ Exactly three of them are zero and rest are 1 or $$-$$1.
Total number of possible matrices $${}^9{C_3} \times {2^6}$$
$$ = {{9 \times 8 \times 7} \over 6} \times 64$$
$$ = 5376$$
Comments (0)
