JEE MAIN - Mathematics (2022 - 27th July Morning Shift - No. 18)

An ellipse $$E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$$ passes through the vertices of the hyperbola $$H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$$. Let the major and minor axes of the ellipse $$E$$ coincide with the transverse and conjugate axes of the hyperbola $$H$$, respectively. Let the product of the eccentricities of $$E$$ and $$H$$ be $$\frac{1}{2}$$. If $$l$$ is the length of the latus rectum of the ellipse $$E$$, then the value of $$113 l$$ is equal to _____________.
Answer
1552

Explanation

Vertices of hyperbola $$ = (0,\, \pm \,8)$$

As ellipse pass through it i.e.,

$$0 + {{64} \over {{b^2}}} = 1 \Rightarrow {b^2} = 64$$ ...... (1)

As major axis of ellipse coincide with transverse axis of hyperbola we have b > a i.e.

$${e_E} = \sqrt {1 - {{{a^2}} \over {64}}} = {{\sqrt {64 - {a^2}} } \over 8}$$

and $${e_H} = \sqrt {1 + {{49} \over {64}}} = {{\sqrt {113} } \over 8}$$

$$\therefore$$ $${e_E}\,.\,{e_H} = {1 \over 2} = {{\sqrt {64 - {a^2}} \sqrt {113} } \over {64}}$$

$$ \Rightarrow (64 - {a^2})(113) = {32^2}$$

$$ \Rightarrow {a^2} = 64 - {{1024} \over {113}}$$

L.R of ellipse $$ = {{2{a^2}} \over b} = {2 \over 8}\left( {{{113 \times 64 - 1024} \over {113}}} \right)$$

$$ = l = {{1552} \over {113}}$$

$$\therefore$$ $$113l = 1552$$

Comments (0)

Advertisement