JEE MAIN - Mathematics (2022 - 27th July Morning Shift - No. 16)
Explanation
$$\cos \left( {{{\sin }^{ - 1}}\left( {x\cot \left( {{{\tan }^{ - 1}}\left( {\cos \left( {{{\sin }^{ - 1}}} \right)} \right)} \right)} \right)} \right) = k$$
$$ \Rightarrow \cos \left( {{{\sin }^{ - 1}}\left( {x\cot \left( {{{\tan }^{ - 1}}\sqrt {1 - {x^2}} } \right)} \right)} \right) = k$$
$$ \Rightarrow \cos \left( {{{\sin }^{ - 1}}\left( {{x \over {\sqrt {1 - {x^2}} }}} \right)} \right) = k$$
$$ \Rightarrow {{\sqrt {1 - 2{x^2}} } \over {\sqrt {1 - {x^2}} }} = k$$
$$ \Rightarrow {{1 - 2{x^2}} \over {1 - {x^2}}} = {k^2}$$
$$ \Rightarrow 1 - 2{x^2} = {k^2} - {k^2}{x^2}$$
$$\therefore$$
$${1 \over {{\alpha ^2}}} + {1 \over {{\beta ^2}}} = 2\left( {{{{k^2} - 2} \over {{k^2} - 1}}} \right)$$ ...... (1)
and $${\alpha \over \beta } = - 1$$ ...... (2)
$$\therefore$$ $$2\left( {{{{k^2} - 2} \over {{k^2} - 1}}} \right)( - 1) = - 5$$
$$ \Rightarrow {k^2} = {1 \over 3}$$
and $$b = S.R = 2\left( {{{{k^2} - 2} \over {{k^2} - 1}}} \right) - 1 = 4$$
$$\therefore$$ $${b \over {{k^2}}} = {4 \over {{1 \over 3}}} = 12$$
Comments (0)
