JEE MAIN - Mathematics (2022 - 26th June Morning Shift - No. 6)

Let f, g : R $$\to$$ R be two real valued functions defined as $$f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$$ and $$g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($$-$$ 4) + (gof) (4) is equal to :
$$4({e^4} + 1)$$
$$2(2{e^4} + 1)$$
$$4{e^4}$$
$$2(2{e^4} - 1)$$

Explanation

$$\because$$ gof is differentiable at x = 0

So R.H.D = L.H.D

$${d \over {dx}}(4{e^x} + {k_2}) = {d \over {dx}}\left( {{{( - |x + 3|)}^2} - {k_1}|x + 3|} \right)$$

$$ \Rightarrow 4 = 6 - {k_1} \Rightarrow {k_1} = 2$$

Also $$f(f({0^ + })) = g(f({0^ - }))$$

$$ \Rightarrow 4 + {k_2} = 9 - 3{k_1} \Rightarrow {k_2} = - 1$$

Now $$g(f( - 4)) + g(f(4))$$

$$ = g( - 1) + g({e^4}) = (1 - {k_1}) + (4{e^4} + {k_2})$$

$$ = 4{e^4} - 2$$

$$ = 2(2{e^4} - 1)$$

Comments (0)

Advertisement