JEE MAIN - Mathematics (2022 - 26th June Morning Shift - No. 4)

The remainder when (2021)2023 is divided by 7 is :
1
2
5
6

Explanation

(2021)2023

= (2016 + 5)2023 [here 2016 is divisible by 7]

= 2023C0 (2016)2023 + .......... + 2023C2022 (2016) (5)2022 + 2023C2023 (5)2023

= 2016 [2023C0 . (2016)2022 + ....... + 2023C2022 . (5)2022] + (5)2023

= 2016$$\lambda$$ + (5)2023

= 7 $$\times$$ 288$$\lambda$$ + (5)2023

= 7K + (5)2023 ...... (1)

Now, (5)2023

= (5)2022 . 5

= (53)674 . 5

= (125)674 . 5

= (126 $$-$$ 1)674 . 5

= 5[674C0 (126)674 + ......... $$-$$ 674C673 (126) + 674C674]

= 5 $$\times$$ 126 [674C0(126)673 + ....... $$-$$ 674C673] + 5

= 5 . 7 . 18 [674C0(126)673 + ....... $$-$$ 674C673] + 5

= 7$$\lambda$$ + 5

Replacing (5)2023 in equation (1) with 7$$\lambda$$ + 5, we get,

(2021)2023 = 7K + 7$$\lambda$$ + 5

= 7(K + $$\lambda$$) + 5

$$\therefore$$ Remainer = 5

Comments (0)

Advertisement