JEE MAIN - Mathematics (2022 - 26th June Morning Shift - No. 1)
Explanation
Given,
$$f(x) = {{x - 1} \over {x + 1}}$$
Also given,
$${f^{n + 1}}(x) = f({f^n}(x))$$ ..... (1)
$$\therefore$$ For $$n = 1$$
$${f^{1 + 1}}(x) = f({f^1}(x))$$
$$ \Rightarrow {f^2}(x) = f(f(x))$$
$$ = f\left( {{{x - 1} \over {x + 1}}} \right)$$
$$ = {{{{x - 1} \over {x + 1}} - 1} \over {{{x - 1} \over {x + 1}} + 1}}$$
$$ = {{{{x - 1 - x - 1} \over {x + 1}}} \over {{{x - 1 + x + 1} \over {x + 1}}}}$$
$$ = {{ - 2} \over {2x}}$$
$$ = - {1 \over x}$$
From equation (1), when n = 2
$${f^{2 + 1}}(x) = f({f^2}(x))$$
$$ \Rightarrow {f^3}(x) = f({f^2}(x))$$
$$ = f\left( { - {1 \over x}} \right)$$
$$ = {{ - {1 \over x} - 1} \over { - {1 \over x} + 1}}$$
$$ = {{{{ - 1 - x} \over x}} \over {{{ - 1 + x} \over x}}}$$
$$ = {{ - 1 - x} \over { - 1 + x}} = {{ - (x + 1)} \over {x - 1}}$$
Similarly,
$${f^4}(x) = f({f^3}(x))$$
$$ = f\left( {{{ - x + 1} \over {x - 1}}} \right)$$
$$ = {{{{ - (x + 1)} \over {x - 1}} - 1} \over {{{ - (x + 1)} \over {x - 1}} + 1}}$$
$$ = {{{{ - x - 1 - x + 1} \over {x - 1}}} \over {{{ - x - 1 + x - 1} \over {x - 1}}}}$$
$$ = {{ - 2x} \over { - 2}} = x$$
$$\therefore$$ $${f^5}(x) = f({f^4}(x))$$
$$ = f(x)$$
$$ = {{x - 1} \over {x + 1}}$$
$${f^6}(x) = f({f^5}(x))$$
$$ = f\left( {{{x - 1} \over {x + 1}}} \right)$$
$$ = - {1 \over x}$$ (Already calculated earlier)
$${f^7}(x) = f({f^6}(x))$$
$$ = f\left( { - {1 \over x}} \right)$$
$$ = {{ - {1 \over x} - 1} \over { - {1 \over x} + 1}}$$
$$ = {{ - (x + 1)} \over {x - 1}}$$
$$\therefore$$ $${f^6}(6) = - {1 \over 6}$$
and $${f^7}(7) = {{ - (7 + 1)} \over {7 - 1}} = - {8 \over 6}$$
So, $${f^6}(6) + {f^7}(7)$$
$$ = - {1 \over 6} - {8 \over 6}$$
$$ = - {3 \over 2}$$
Comments (0)
