JEE MAIN - Mathematics (2022 - 26th June Evening Shift - No. 8)

If $$y = y(x)$$ is the solution of the differential equation

$$x{{dy} \over {dx}} + 2y = x\,{e^x}$$, $$y(1) = 0$$ then the local maximum value

of the function $$z(x) = {x^2}y(x) - {e^x},\,x \in R$$ is :
1 $$-$$ e
0
$${1 \over 2}$$
$${4 \over e} - e$$

Explanation

$$x{{dy} \over {dx}} + 2y = x{e^x},\,\,y(1) = 0$$

$${{dy} \over {dx}} + {2 \over x}y = {e^x}$$, then $${e^{\int {{2 \over x}dx} }}dx = {x^2}$$

$$y\,.\,{x^2} = \int {{x^2}{e^x}dx} $$

$$y{x^2} = {x^2}{e^x} - \int {2x{e^x}dx} $$

$$ = {x^2}{e^x} - 2(x{e^x} - {e^x}) + c$$

$$y{x^2} = {x^2}{e^x} - 2x{e^x} + 2{e^x} + c$$

$$y{x^2} = ({x^2} - 2x + 2){e^x} + c$$

$$0 = e + c \Rightarrow c = - e$$

$$y(x)\,.\,{x^2} - {e^x} = {(x - 1)^2}{e^x} - e$$

$$z(x) = {(x - 1)^2}{e^x} - e$$

For local maximum $$z'(x) = 0$$

$$\therefore$$ $$2(x - 1){e^x} + {(x - 1)^2}{e^x} = 0$$

$$\therefore$$ $$x = - 1$$

And local maximum value $$ = z( - 1)$$

$$ = {4 \over e} - e$$

Comments (0)

Advertisement