JEE MAIN - Mathematics (2022 - 26th June Evening Shift - No. 17)
If $${z^2} + z + 1 = 0$$, $$z \in C$$, then
$$\left| {\sum\limits_{n = 1}^{15} {{{\left( {{z^n} + {{( - 1)}^n}{1 \over {{z^n}}}} \right)}^2}} } \right|$$ is equal to _________.
$$\left| {\sum\limits_{n = 1}^{15} {{{\left( {{z^n} + {{( - 1)}^n}{1 \over {{z^n}}}} \right)}^2}} } \right|$$ is equal to _________.
Answer
2
Explanation
$$\because$$ $${z^2} + z + 1 = 0$$
$$\Rightarrow$$ $$\omega$$ or $$\omega$$2
$$\because$$ $$\left| {\sum\limits_{n = 1}^{15} {{{\left( {{z^n} + {{( - 1)}^n}{1 \over {{z^n}}}} \right)}^2}} } \right|$$
$$ = \left| {\sum\limits_{n = 1}^{15} {{z^{2n}} + \sum\limits_{n = 1}^{15} {{z^{ - 2n}} + 2\,.\,\sum\limits_{n = 1}^{15} {{{( - 1)}^n}} } } } \right|$$
$$ = \left| {0 + 0 - 2} \right|$$
$$ = 2$$
Comments (0)
