JEE MAIN - Mathematics (2022 - 26th June Evening Shift - No. 14)
If the inverse trigonometric functions take principal values then
$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$ is equal to :
$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$ is equal to :
0
$${\pi \over 4}$$
$${\pi \over 3}$$
$${\pi \over 6}$$
Explanation
$${\cos ^{ - 1}}\left( {{3 \over {10}}\cos \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right) + {2 \over 5}\sin \left( {{{\tan }^{ - 1}}\left( {{4 \over 3}} \right)} \right)} \right)$$
$$ = {\cos ^{ - 1}}\left( {{3 \over {10}}\,.\,{3 \over 5} + {2 \over 5}\,.\,{4 \over 5}} \right)$$
$$ = {\cos ^{ - 1}}\left( {{1 \over 2}} \right) = {\pi \over 3}$$
Comments (0)
