JEE MAIN - Mathematics (2022 - 26th July Morning Shift - No. 12)

Let $$\overrightarrow{\mathrm{a}}=\alpha \hat{i}+\hat{j}-\hat{k}$$ and $$\overrightarrow{\mathrm{b}}=2 \hat{i}+\hat{j}-\alpha \hat{k}, \alpha>0$$. If the projection of $$\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}$$ on the vector $$-\hat{i}+2 \hat{j}-2 \hat{k}$$ is 30, then $$\alpha$$ is equal to :
$$\frac{15}{2}$$
8
$$\frac{13}{2}$$
7

Explanation

Given : $$\overrightarrow a = (\alpha ,1, - 1)$$ and $$\overrightarrow b = (2,1, - \alpha )$$

$$\overrightarrow c = \overrightarrow a \times \overrightarrow b = \left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr \alpha & 1 & { - 1} \cr 2 & 1 & { - \alpha } \cr } } \right|$$

$$ = ( - \alpha + 1)\widehat i + ({\alpha ^2} - 2)\widehat j + (\alpha - 2)\widehat k$$

Projection of $$\overrightarrow c $$ on $$\overrightarrow d = - \widehat i + 2\widehat j - 2\widehat k$$

$$ = \left| {\overrightarrow c \,.\,{{\overrightarrow d } \over {|d|}}} \right| = 30$$ {Given}

$$ \Rightarrow \, = \left| {{{\alpha - 1 - 4 + 2{\alpha ^2} - 2\alpha + 4} \over {\sqrt {1 + 4 + 4} }}} \right| = 30$$

On solving $$\alpha = {{ - 13} \over 2}$$ (Rejected as $$\alpha > 0$$)

and $$\alpha = 7$$

Comments (0)

Advertisement