JEE MAIN - Mathematics (2022 - 26th July Morning Shift - No. 1)
Explanation
$$f(3x) - f(x) = x$$ ...... (1)
$$x \to {x \over 3}$$
$$f(x) - f\left( {{x \over 3}} \right) = {x \over 3}$$ ....... (2)
Again $$x \to {x \over 3}$$
$$f\left( {{x \over 3}} \right) - f\left( {{x \over 9}} \right) = {x \over {{3^2}}}$$ ...... (3)
Similarly
$$f\left( {{x \over {{3^{n - 2}}}}} \right) - f\left( {{x \over {{3^{n - 1}}}}} \right) = {x \over {{3^{n - 1}}}}\,.....\,(n)$$
Adding all these and applying $$n \to \infty $$
$$\mathop {\lim }\limits_{n \to \infty } \left( {f(3x) - f\left( {{x \over {{3^{n - 1}}}}} \right)} \right) = x\left( {1 + {1 \over 3} + {1 \over {{3^2}}}\, + \,....} \right)$$
$$f(3x) - f(0) = {{3x} \over 2}$$
Putting $$x = {8 \over 3}$$
$$f(8) - f(0) = 4$$
$$ \Rightarrow f(0) = 3$$
Putting $$x = {{14} \over 3}$$
$$f(14) - 3 = 7 \Rightarrow f(14) = 10$$
Comments (0)
