JEE MAIN - Mathematics (2022 - 26th July Evening Shift - No. 6)

Let $$\beta=\mathop {\lim }\limits_{x \to 0} \frac{\alpha x-\left(e^{3 x}-1\right)}{\alpha x\left(e^{3 x}-1\right)}$$ for some $$\alpha \in \mathbb{R}$$. Then the value of $$\alpha+\beta$$ is :
$$\frac{14}{5}$$
$$\frac{3}{2}$$
$$\frac{5}{2}$$
$$\frac{7}{2}$$

Explanation

$$\beta = \mathop {\lim }\limits_{x \to 0} {{\alpha x - ({e^{3x}} - 1)} \over {\alpha x({e^{3x}} - 1)}},\,\alpha \in R$$

$$ = \mathop {\lim }\limits_{x \to 0} {{{\alpha \over 3} - \left( {{{{e^{3x}} - 1} \over {3x}}} \right)} \over {\alpha x\left( {{{{e^{3x - 1}}} \over {3x}}} \right)}}$$

So, $$\alpha = 3$$ (to make independent form)

$$\beta = \mathop {\lim }\limits_{x \to 0} {{1 - \left( {{{{e^{3x}} - 1} \over {3x}}} \right)} \over {3x}} = {{1 - {{\left( {3x + {{9{x^2}} \over 2}\, + \,......} \right)} \over {3x}}} \over {3x}}$$

$$ = {{ - \left( {{9 \over 2}{x^2} + {{{{(3x)}^3}} \over {31}}\, + \,....} \right)} \over {9{x^2}}} = {{ - 1} \over 2}$$

$$\therefore$$ $$\alpha + \beta = 3 - {1 \over 2} = {5 \over 2}$$

Comments (0)

Advertisement