JEE MAIN - Mathematics (2022 - 26th July Evening Shift - No. 13)

$$ \text { The integral } \int \frac{\left(1-\frac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{\left(1+\frac{2}{\sqrt{3}} \sin 2 x\right)} d x \text { is equal to } $$
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}\right|+C$$
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{3}\right)}\right|+C$$
$$ \log _{e}\left|\frac{\tan \left(\frac{x}{2}+\frac{\pi}{6}\right)}{\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)}\right|+C$$
$$\frac{1}{2} \log _{e}\left|\frac{\tan \left(\frac{x}{2}-\frac{\pi}{12}\right)}{\tan \left(\frac{x}{2}-\frac{\pi}{6}\right)}\right|+C $$

Explanation

$$ = \int {{{\left( {1 - {1 \over {\sqrt 3 }}} \right)(\cos x - \sin x)} \over {\left( {1 + {2 \over {\sqrt 3 }}\sin 2x} \right)}}dx} $$

$$ = \int {{{\left( {{{\sqrt 3 - 1} \over {\sqrt 3 }}} \right)\sqrt 2 \sin \left( {{\pi \over 4} - x} \right)} \over {\left( {{2 \over {\sqrt 3 }}} \right)\left( {\sin {\pi \over 3} + \sin 2x} \right)}}dx} $$

$$ = \int {{{{{(\sqrt 3 - 1)} \over {\sqrt 2 }}\sin \left( {{\pi \over 4} - x} \right)} \over {\left( {\sin {\pi \over 3} + \sin 2x} \right)}}dx} $$

$$ = \int {{{{{\sqrt 3 - 1} \over {2\sqrt 2 }}\sin \left( {{\pi \over 4} - x} \right)} \over {\sin \left( {{\pi \over 6} + x} \right)\cos \left( {{\pi \over 6} - x} \right)}}dx} $$

$$ = {1 \over 2}\int {{{2\sin {\pi \over {12}}\sin \left( {{\pi \over 4} - x} \right)} \over {\sin \left( {{\pi \over 6} + x} \right)\cos \left( {{\pi \over 6} - x} \right)}}dx} $$

$$ = {1 \over 2}\int {{{\cos \left( {{\pi \over 6} - x} \right) - \cos \left( {{\pi \over 3} - x} \right)} \over {\sin \left( {{\pi \over 6} + x} \right)\cos \left( {{\pi \over 6} - x} \right)}}dx} $$

$$ = {1 \over 2}\left[ {\int {{\mathop{\rm cosec}\nolimits} \left( {{\pi \over 6} + x} \right)dx - \int {\sec \left( {{\pi \over 6} - x} \right)dx} } } \right]$$

$$ = {1 \over 2}\left[ {\ln \left| {\tan \left( {{\pi \over {12}} + {x \over 2}} \right)} \right| - \int {\cos ec\left( {{\pi \over 3} - x} \right)dx} } \right]$$

$$ = {1 \over 2}\left[ {\ln \left| {\tan \left( {{\pi \over {12}} + {x \over 2}} \right)} \right| - \ln \left| {{\pi \over 6} + {x \over 2}} \right|} \right] + C$$

$$ = {1 \over 2}\ln \left| {{{\tan \left( {{\pi \over 2} + {x \over 2}} \right)} \over {\tan \left( {{\pi \over 6} + {x \over 2}} \right)}}} \right| + C$$

Comments (0)

Advertisement