JEE MAIN - Mathematics (2022 - 26th July Evening Shift - No. 11)

If the line $$x-1=0$$ is a directrix of the hyperbola $$k x^{2}-y^{2}=6$$, then the hyperbola passes through the point :
$$(-2 \sqrt{5}, 6)$$
$$(-\sqrt{5}, 3)$$
$$(\sqrt{5},-2)$$
$$(2 \sqrt{5}, 3 \sqrt{6})$$

Explanation

Given hyperbola : $${{{x^2}} \over {6/k}} - {{{y^2}} \over 6} = 1$$

Eccentricity $$ = e = \sqrt {1 + {6 \over {6/k}}} = \sqrt {1 + k} $$

Directrices : $$x = \, \pm \,{a \over e} \Rightarrow x = \, \pm \,{{\sqrt 6 } \over {\sqrt k \sqrt {k + 1} }}$$

As given : $${{\sqrt 6 } \over {\sqrt k \sqrt {k + 1} }} = 1$$

$$ \Rightarrow k = 2$$

Here hyperbola is $${{{x^2}} \over 3} - {{{y^2}} \over 6} = 1$$

Checking the option gives $$\left( {\sqrt 5 , - 2} \right)$$ satisfies it.

Comments (0)

Advertisement