JEE MAIN - Mathematics (2022 - 26th July Evening Shift - No. 11)
If the line $$x-1=0$$ is a directrix of the hyperbola $$k x^{2}-y^{2}=6$$, then the hyperbola passes through the point :
$$(-2 \sqrt{5}, 6)$$
$$(-\sqrt{5}, 3)$$
$$(\sqrt{5},-2)$$
$$(2 \sqrt{5}, 3 \sqrt{6})$$
Explanation
Given hyperbola : $${{{x^2}} \over {6/k}} - {{{y^2}} \over 6} = 1$$
Eccentricity $$ = e = \sqrt {1 + {6 \over {6/k}}} = \sqrt {1 + k} $$
Directrices : $$x = \, \pm \,{a \over e} \Rightarrow x = \, \pm \,{{\sqrt 6 } \over {\sqrt k \sqrt {k + 1} }}$$
As given : $${{\sqrt 6 } \over {\sqrt k \sqrt {k + 1} }} = 1$$
$$ \Rightarrow k = 2$$
Here hyperbola is $${{{x^2}} \over 3} - {{{y^2}} \over 6} = 1$$
Checking the option gives $$\left( {\sqrt 5 , - 2} \right)$$ satisfies it.
Comments (0)
