JEE MAIN - Mathematics (2022 - 25th June Evening Shift - No. 9)
If $${b_n} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx} \over {\sin x}}dx,\,n \in N} $$, then
$${b_3} - {b_2},\,{b_4} - {b_3},\,{b_5} - {b_4}$$ are in A.P. with common difference $$-$$2
$${1 \over {{b_3} - {b_2}}},{1 \over {{b_4} - {b_3}}},{1 \over {{b_5} - {b_4}}}$$ are in an A.P. with common difference 2
$${b_3} - {b_2},\,{b_4} - {b_3},\,{b_5} - {b_4}$$ are in a G.P.
$${1 \over {{b_3} - {b_2}}},{1 \over {{b_4} - {b_3}}},{1 \over {{b_5} - {b_4}}}$$ are in an A.P. with common difference $$-$$2
Explanation
$${b_n} - {b_{n - 1}} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx - {{\cos }^2}(n - 1)x} \over {\sin x}}dx} $$
$$ = \int_0^{{\pi \over 2}} {{{ - \sin (2n - 1)x\,.\,\sin x} \over {\sin x}}dx} $$
$$ = \left. {{{\cos (2n - 1)x} \over {2n - 1}}} \right|_0^{\pi /2} = - {1 \over {2n - 1}}$$
So, $${b_3} - {b_2}$$, $${b_4} - {b_3}$$, $${b_5} - {b_4}$$ are in H.P.
$$ \Rightarrow {1 \over {{b_3} - {b_2}}},\,{1 \over {{b_4} - {b_3}}},\,{1 \over {{b_5} - {b_4}}}$$ are in A.P. with common difference $$-$$2.
Comments (0)
