JEE MAIN - Mathematics (2022 - 25th June Evening Shift - No. 8)

Water is being filled at the rate of 1 cm3 / sec in a right circular conical vessel (vertex downwards) of height 35 cm and diameter 14 cm. When the height of the water level is 10 cm, the rate (in cm2 / sec) at which the wet conical surface area of the vessel increases is
5
$${{\sqrt {21} } \over 5}$$
$${{\sqrt {26} } \over 5}$$
$${{\sqrt {26} } \over {10}}$$

Explanation

$$\because$$ $$V = {1 \over 3}\pi {r^2}h$$ and $${r \over h} = {7 \over {35}} = {1 \over 5}$$

$$ \Rightarrow V = {1 \over {75}}\pi {h^3}$$

JEE Main 2022 (Online) 25th June Evening Shift Mathematics - Application of Derivatives Question 74 English Explanation

$${{dV} \over {dt}} = {1 \over {25}}\pi {h^2}{{dh} \over {dt}} = 1$$

$$ \Rightarrow {{dh} \over {dt}} = {{25} \over {\pi {h^2}}}$$

Now, $$S = \pi rl = \pi \left( {{h \over 5}} \right)\sqrt {{h^2} + {{{h^2}} \over {25}}} = {\pi \over {25}}\sqrt {26} {h^2}$$

$$ \Rightarrow {{dS} \over {dt}} = {{2\sqrt {26} \pi h} \over {25}}\,.\,{{dh} \over {dt}} = {{2\sqrt {26} } \over h}$$

$$ \Rightarrow {{dS} \over {d{t_{(h = 10)}}}} = {{\sqrt {26} } \over 5}$$

Comments (0)

Advertisement