JEE MAIN - Mathematics (2022 - 25th June Evening Shift - No. 23)

Let l1 be the line in xy-plane with x and y intercepts $${1 \over 8}$$ and $${1 \over {4\sqrt 2 }}$$ respectively, and l2 be the line in zx-plane with x and z intercepts $$ - {1 \over 8}$$ and $$ - {1 \over {6\sqrt 3 }}$$ respectively. If d is the shortest distance between the line l1 and l2, then d$$-$$2 is equal to _______________.
Answer
51

Explanation

$${{x - {1 \over 8}} \over {{1 \over 8}}} = {y \over { - {1 \over {4\sqrt 2 }}}} = {z \over 0}\,\,\,\,\,\,\,\,\,\,\,\,\,$$ ______L1

or $${{x - {1 \over 8}} \over 1} = {y \over { - \sqrt 2 }} = {z \over 0}$$ ..... (i)

Equation of L2

$${{x + {1 \over 8}} \over { - 6\sqrt 3 }} = {y \over 0} = {z \over 8}$$ ...... (ii)

$$d = \left| {{{(\overrightarrow c - \overrightarrow a )\,.\,(\overrightarrow b \times \overrightarrow d )} \over {\left| {\overrightarrow b \times \overrightarrow d } \right|}}} \right|$$

$$ = {{\left( {{1 \over 4}\widehat i} \right)\,.\,\left( {4\sqrt 2 \widehat i + 4\widehat j + 3\sqrt 6 \widehat k} \right)} \over {\sqrt {{{\left( {4\sqrt 2 } \right)}^2} + {4^2} + {{\left( {3\sqrt 6 } \right)}^2}} }}$$

$$ = {{\sqrt 2 } \over {\sqrt {32 + 16 + 54} }} = {1 \over {\sqrt {51} }}$$

$${d^{ - 2}} = 51$$

Comments (0)

Advertisement