JEE MAIN - Mathematics (2022 - 25th June Evening Shift - No. 14)

The line y = x + 1 meets the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ at two points P and Q. If r is the radius of the circle with PQ as diameter then (3r)2 is equal to :
20
12
11
8

Explanation

Let point (a, a + 1) as the point of intersection of line and ellipse.

So, $${{{a^2}} \over 4} + {{{{(a + 1)}^2}} \over 2} = 1 \Rightarrow {a^2} + 2({a^2} + 2a + 1) = 4$$

$$ \Rightarrow 3{a^2} + 4a - 2 = 0$$

If roots of this equation are $$\alpha$$ and $$\beta$$.

So, $$P(\alpha ,\,\alpha + 1)$$ and $$Q(\beta ,\,\beta + 1)$$

$$PQ = 4{r^2} = {(\alpha - \beta )^2} + {(\alpha - \beta )^2}$$

$$ \Rightarrow 9{r^2} = {9 \over 4}(2{(\alpha - \beta )^2})$$

$$ = {9 \over 2}\left[ {{{(\alpha + \beta )}^2} - 4\alpha \beta } \right]$$

$$ = {9 \over 2}\left[ {{{\left( { - {4 \over 3}} \right)}^2} + {8 \over 3}} \right]$$

$$ = {1 \over 2}[16 + 24] = 20$$

Comments (0)

Advertisement