JEE MAIN - Mathematics (2022 - 25th June Evening Shift - No. 14)
The line y = x + 1 meets the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$ at two points P and Q. If r is the radius of the circle with PQ as diameter then (3r)2 is equal to :
20
12
11
8
Explanation
Let point (a, a + 1) as the point of intersection of line and ellipse.
So, $${{{a^2}} \over 4} + {{{{(a + 1)}^2}} \over 2} = 1 \Rightarrow {a^2} + 2({a^2} + 2a + 1) = 4$$
$$ \Rightarrow 3{a^2} + 4a - 2 = 0$$
If roots of this equation are $$\alpha$$ and $$\beta$$.
So, $$P(\alpha ,\,\alpha + 1)$$ and $$Q(\beta ,\,\beta + 1)$$
$$PQ = 4{r^2} = {(\alpha - \beta )^2} + {(\alpha - \beta )^2}$$
$$ \Rightarrow 9{r^2} = {9 \over 4}(2{(\alpha - \beta )^2})$$
$$ = {9 \over 2}\left[ {{{(\alpha + \beta )}^2} - 4\alpha \beta } \right]$$
$$ = {9 \over 2}\left[ {{{\left( { - {4 \over 3}} \right)}^2} + {8 \over 3}} \right]$$
$$ = {1 \over 2}[16 + 24] = 20$$
Comments (0)
