JEE MAIN - Mathematics (2022 - 25th July Morning Shift - No. 19)
Let $$a, b$$ be two non-zero real numbers. If $$p$$ and $$r$$ are the roots of the equation $$x^{2}-8 \mathrm{a} x+2 \mathrm{a}=0$$ and $$\mathrm{q}$$ and s are the roots of the equation $$x^{2}+12 \mathrm{~b} x+6 \mathrm{~b}=0$$, such that $$\frac{1}{\mathrm{p}}, \frac{1}{\mathrm{q}}, \frac{1}{\mathrm{r}}, \frac{1}{\mathrm{~s}}$$ are in A.P., then $$\mathrm{a}^{-1}-\mathrm{b}^{-1}$$ is equal to _____________.
Answer
38
Explanation
$\because$ Roots of $2 a x^{2}-8 a x+1=0$ are $\frac{1}{p}$ and $\frac{1}{r}$ and roots of $6 b x^{2}+12 b x+1=0$ are $\frac{1}{q}$ and $\frac{1}{s}$.
Let $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}, \frac{1}{s}$ as $\alpha-3 \beta, \alpha-\beta, \alpha+\beta, \alpha+3 \beta$
So sum of roots $2 \alpha-2 \beta=4$ and $2 \alpha+2 \beta=-2$
Clearly $\alpha=\frac{1}{2}$ and $\beta=-\frac{3}{2}$
Now product of roots, $\frac{1}{p} \cdot \frac{1}{r}=\frac{1}{2 a}=-5 \Rightarrow \frac{1}{a}=-10$
and $\frac{1}{q} \cdot \frac{1}{x}=\frac{1}{6 b}=-8 \Rightarrow \frac{1}{b}=-48$
So, $\frac{1}{a}-\frac{1}{b}=38$
Let $\frac{1}{p}, \frac{1}{q}, \frac{1}{r}, \frac{1}{s}$ as $\alpha-3 \beta, \alpha-\beta, \alpha+\beta, \alpha+3 \beta$
So sum of roots $2 \alpha-2 \beta=4$ and $2 \alpha+2 \beta=-2$
Clearly $\alpha=\frac{1}{2}$ and $\beta=-\frac{3}{2}$
Now product of roots, $\frac{1}{p} \cdot \frac{1}{r}=\frac{1}{2 a}=-5 \Rightarrow \frac{1}{a}=-10$
and $\frac{1}{q} \cdot \frac{1}{x}=\frac{1}{6 b}=-8 \Rightarrow \frac{1}{b}=-48$
So, $\frac{1}{a}-\frac{1}{b}=38$
Comments (0)
