JEE MAIN - Mathematics (2022 - 25th July Morning Shift - No. 15)

If the numbers appeared on the two throws of a fair six faced die are $$\alpha$$ and $$\beta$$, then the probability that $$x^{2}+\alpha x+\beta>0$$, for all $$x \in \mathbf{R}$$, is :
$$\frac{17}{36}$$
$$ \frac{4}{9} $$
$$\frac{1}{2}$$
$$\frac{19}{36}$$

Explanation

For $x^{2}+\alpha x+\beta>0 \forall x \in R$ to hold, we should have $\alpha^{2}-4 \beta<0$

If $\alpha=1, \beta$ can be 1, 2, 3, 4, 5, 6 i.e., 6 choices

If $\alpha=2, \beta$ can be 2, 3, 4, 5, 6 i.e., 5 choices

If $\alpha=3, \beta$ can be $3,4,5,6$ i.e., 4 choices

If $\alpha=4, \beta$ can be 5 or 6 i.e., 2 choices

If $\alpha=6$, No possible value for $\beta$ i.e., 0 choices

Hence total favourable outcomes

$$ \begin{aligned} &=6+5+4+2+0+0 \\\\ &=17 \end{aligned} $$

Total possible choices for $\alpha$ and $\beta=6 \times 6=36$

Required probability $=\frac{17}{36}$

Comments (0)

Advertisement