JEE MAIN - Mathematics (2022 - 25th July Morning Shift - No. 14)
Let $$\mathrm{ABC}$$ be a triangle such that $$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}$$ and $$\vec{b} \cdot \vec{c}=12$$. Consider the statements :
$$(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)$$
$$(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$$
Then
both (S1) and (S2) are true
only (S1) is true
only (S2) is true
both (S1) and (S2) are false
Explanation
_25th_July_Morning_Shift_en_14_1.png)
$$ \because \vec{a}+\vec{b}+\vec{c}=0 $$
then $\bar{a}+\vec{c}=-\vec{b}$
then $(\vec{a}+\vec{c}) \times \vec{b}=-\vec{b} \times \bar{b}$
$\therefore \quad \vec{a} \times \vec{b}+\vec{c} \times \vec{b}=\overline{0}\quad\dots(i)$
For $(S 1):|\vec{a} \times \vec{b}+\vec{c} \times \vec{b}|-|\vec{c}|=6(2 \sqrt{2}-1)$
$$ \begin{aligned} &|(\vec{a}+\vec{c}) \times \vec{b}|-|\vec{c}|=6(2 \sqrt{2}-1) \\\\ &|\vec{c}|=6-12 \sqrt{2} \text { (not possible) } \end{aligned} $$
Hence (S1) is not correct
For (S2) : from (i) $\vec{b}+\vec{c}=-\vec{a}$
$\Rightarrow \vec{b} \cdot \vec{b}+\vec{c} \cdot \vec{b}=-\vec{a} \cdot \vec{b}$
$\Rightarrow 12+12=-6 \sqrt{2} \cdot 2 \sqrt{3} \cos (\pi-\angle A C B)$
$\therefore \cos (\angle A C B)=\sqrt{\frac{2}{3}}$
$$ \begin{aligned} &\therefore \angle A C B=\cos ^{-1} \sqrt{\frac{2}{3}} \\\\ &\therefore S(2) \text { is correct. } \end{aligned} $$
Comments (0)
