JEE MAIN - Mathematics (2022 - 25th July Morning Shift - No. 10)
The slope of the tangent to a curve $$C: y=y(x)$$ at any point $$(x, y)$$ on it is $$\frac{2 \mathrm{e}^{2 x}-6 \mathrm{e}^{-x}+9}{2+9 \mathrm{e}^{-2 x}}$$.
If $$C$$ passes through the points $$\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right)$$ and $$\left(\alpha, \frac{1}{2} \mathrm{e}^{2 \alpha}\right)$$, then $$\mathrm{e}^{\alpha}$$ is equal to :
$$\frac{3+\sqrt{2}}{3-\sqrt{2}}$$
$$\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right)$$
$$
\frac{1}{\sqrt{2}}\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)
$$
$$\frac{\sqrt{2}+1}{\sqrt{2}-1}$$
Explanation
$\frac{d y}{d x}=\frac{2 e^{2 x}-6 e^{-x}+9}{2+9 e^{-2 x}}=e^{2 x}-\frac{6 e^{-x}}{2+9 e^{-2 x}}$
$$ \begin{aligned} &\int d y=\int e^{2 x} d x-3 \int \underbrace{1+\left(\frac{3 e^{-x}}{\sqrt{2}}\right)^{2}}_{\text {put } e^{-x}=t} d x \\\\ &=\frac{e^{2 x}}{2}+3 \int \frac{d t}{1+\left(\frac{3 t}{\sqrt{2}}\right)^{2}} \\\\ &=\frac{e^{2 x}}{2}+\sqrt{2} \tan ^{-1} \frac{3 t}{\sqrt{2}}+C \end{aligned} $$
$y=\frac{e^{2 x}}{2}+\sqrt{2} \tan ^{-1}\left(\frac{3 e^{-x}}{\sqrt{2}}\right)+C$
It is given that the curve passes through
$$ \left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) $$
$$ \begin{aligned} & \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}=\frac{1}{2}+\sqrt{2} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)+C \end{aligned} $$
$\Rightarrow \quad C=\frac{\pi}{2 \sqrt{2}}-\sqrt{2} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)$
Now if $\left(\alpha, \frac{1}{2} e^{2 \alpha}\right)$ satisfies the curve, then
$$ \frac{1}{2} e^{2 \alpha}=\frac{e^{2 \alpha}}{2}+\sqrt{2} \tan ^{-1}\left(\frac{3 e^{-\alpha}}{\sqrt{2}}\right)+\frac{\pi}{2 \sqrt{2}}-\sqrt{2} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right) $$
$\tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)-\tan ^{-1}\left(\frac{3 e^{-\alpha}}{\sqrt{2}}\right)=\frac{\pi}{2 \sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{\pi}{4}$
$$ \frac{\frac{3}{\sqrt{2}}-\frac{3 e^{-\alpha}}{\sqrt{2}}}{1+\frac{9}{2} e^{-\alpha}}=1 $$
$$ \frac{3}{\sqrt{2}} e^{\alpha}-\frac{3}{\sqrt{2}}=e^{\alpha}+\frac{9}{2} $$
$$ e^{\alpha}=\frac{\frac{9}{2}+\frac{3}{\sqrt{2}}}{\frac{3}{\sqrt{2}}-1}=\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right) $$
$$ \begin{aligned} &\int d y=\int e^{2 x} d x-3 \int \underbrace{1+\left(\frac{3 e^{-x}}{\sqrt{2}}\right)^{2}}_{\text {put } e^{-x}=t} d x \\\\ &=\frac{e^{2 x}}{2}+3 \int \frac{d t}{1+\left(\frac{3 t}{\sqrt{2}}\right)^{2}} \\\\ &=\frac{e^{2 x}}{2}+\sqrt{2} \tan ^{-1} \frac{3 t}{\sqrt{2}}+C \end{aligned} $$
$y=\frac{e^{2 x}}{2}+\sqrt{2} \tan ^{-1}\left(\frac{3 e^{-x}}{\sqrt{2}}\right)+C$
It is given that the curve passes through
$$ \left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) $$
$$ \begin{aligned} & \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}=\frac{1}{2}+\sqrt{2} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)+C \end{aligned} $$
$\Rightarrow \quad C=\frac{\pi}{2 \sqrt{2}}-\sqrt{2} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)$
Now if $\left(\alpha, \frac{1}{2} e^{2 \alpha}\right)$ satisfies the curve, then
$$ \frac{1}{2} e^{2 \alpha}=\frac{e^{2 \alpha}}{2}+\sqrt{2} \tan ^{-1}\left(\frac{3 e^{-\alpha}}{\sqrt{2}}\right)+\frac{\pi}{2 \sqrt{2}}-\sqrt{2} \tan ^{-1}\left(\frac{3}{\sqrt{2}}\right) $$
$\tan ^{-1}\left(\frac{3}{\sqrt{2}}\right)-\tan ^{-1}\left(\frac{3 e^{-\alpha}}{\sqrt{2}}\right)=\frac{\pi}{2 \sqrt{2}} \times \frac{1}{\sqrt{2}}=\frac{\pi}{4}$
$$ \frac{\frac{3}{\sqrt{2}}-\frac{3 e^{-\alpha}}{\sqrt{2}}}{1+\frac{9}{2} e^{-\alpha}}=1 $$
$$ \frac{3}{\sqrt{2}} e^{\alpha}-\frac{3}{\sqrt{2}}=e^{\alpha}+\frac{9}{2} $$
$$ e^{\alpha}=\frac{\frac{9}{2}+\frac{3}{\sqrt{2}}}{\frac{3}{\sqrt{2}}-1}=\frac{3}{\sqrt{2}}\left(\frac{3+\sqrt{2}}{3-\sqrt{2}}\right) $$
Comments (0)
