JEE MAIN - Mathematics (2022 - 25th July Evening Shift - No. 23)

Let $$x = \sin (2{\tan ^{ - 1}}\alpha )$$ and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right)$$. If $$S = \{ a \in R:{y^2} = 1 - x\} $$, then $$\sum\limits_{\alpha \in S}^{} {16{\alpha ^3}} $$ is equal to _______________.
Answer
130

Explanation

$$\because$$ $$x = \sin \left( {2{{\tan }^{ - 1}}\alpha } \right) = {{2\alpha } \over {1 + {\alpha ^2}}}$$ ...... (i)

and $$y = \sin \left( {{1 \over 2}{{\tan }^{ - 1}}{4 \over 3}} \right) = \sin \left( {{{\sin }^{ - 1}}{1 \over {\sqrt 5 }}} \right) = {1 \over {\sqrt 5 }}$$

Now, $${y^2} = 1 - x$$

$${1 \over 5} = 1 - {{2\alpha } \over {1 + {\alpha ^2}}}$$

$$ \Rightarrow 1 + {\alpha ^2} = 5 + 5{\alpha ^2} - 10\alpha $$

$$ \Rightarrow 2{\alpha ^2} - 5\alpha + 2 = 0$$

$$\therefore$$ $$\alpha = 2,{1 \over 2}$$

$$\therefore$$ $$\sum\limits_{\alpha \in S} {16{\alpha ^3} = 16 \times {2^3} + 16 \times {1 \over {{2^3}}} = 130} $$

Comments (0)

Advertisement