JEE MAIN - Mathematics (2022 - 25th July Evening Shift - No. 22)
Let the area enclosed by the x-axis, and the tangent and normal drawn to the curve $$4{x^3} - 3x{y^2} + 6{x^2} - 5xy - 8{y^2} + 9x + 14 = 0$$ at the point ($$-$$2, 3) be A. Then 8A is equal to ______________.
Answer
170
Explanation
$$
\begin{aligned}
& 4 x^3-3 x y^2+6 x^2-5 x y-8 y^2+9 x+14=0 \text { at } P(-2,3) \\\\
& 12 x^2-3\left(y^2+2 y x y^{\prime}\right)+12 x-5\left(x y^{\prime}+y\right)-16 y y^{\prime} + 9=0 \\\\
& 48-3\left(9-12 y^{\prime}\right)-24-5\left(-2 y^{\prime}+3\right)-48 y^{\prime}+9 =0 \\\\
& y^{\prime}=-9 / 2 \\\\
& \text { Tangent } y-3=-\frac{9}{2}(x+2) \Rightarrow 9 x+2 y=-12 \\\\
& \text { Normal : } y-3=\frac{2}{9}(x+2) \Rightarrow 9 y-2 x=31
\end{aligned}
$$
_25th_July_Evening_Shift_en_22_1.png)
$$ \begin{aligned} & \text { Area }=\frac{1}{2}\left(\frac{31}{2}-4\right) \times 3=\frac{85}{4} \\\\ & 8 \mathrm{~A}=170 \end{aligned} $$
_25th_July_Evening_Shift_en_22_1.png)
$$ \begin{aligned} & \text { Area }=\frac{1}{2}\left(\frac{31}{2}-4\right) \times 3=\frac{85}{4} \\\\ & 8 \mathrm{~A}=170 \end{aligned} $$
Comments (0)
