JEE MAIN - Mathematics (2022 - 24th June Morning Shift - No. 7)
$${({\tan ^{ - 1}}x)^3} + {({\cot ^{ - 1}}x)^3} = k{\pi ^3},\,x \in R$$, is the interval :
Explanation
$${({\tan ^{ - 1}}x)^3} + {({\cot ^{ - 1}}x)^3} = k{\pi ^3}$$
Let $$f(t) = {t^3} + {\left( {{\pi \over 2} - t} \right)^3}$$
Where $$t = {\tan ^{ - 1}}x$$ ; $$x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$$
$$ = {t^3} + {\left( {{\pi \over 2}} \right)^3} - {{3{\pi ^2}t} \over 4} + {{3\pi } \over 2}{t^2} - {t^3}$$
$$f(t) = {{3\pi } \over 2}{t^2} - {{3{\pi ^2}} \over 4}\,.\,t + {{{\pi ^3}} \over 8}$$
This is a quadratic equation of t.
Here, coefficient of t2 term is $${{3\pi } \over 2}$$ which is > 0.
$$\therefore$$ It is a upward parabola.
Now, $$f'(t) = 3\pi t - {{3{\pi ^2}} \over 4}$$
$$f''(t) = 3\pi > 0$$
$$\therefore$$ $$3\pi t - {{3{\pi ^2}} \over 4} = 0$$
$$ \Rightarrow t = {\pi \over 4}$$ (minima)
$$\therefore$$ vertex of graph at $${\pi \over 4}$$
$$\therefore$$ Minimum value at $${\pi \over 4}$$ and maximum value at $$-$$$${\pi \over 2}$$.
$$\therefore$$ $$f\left( {{\pi \over 4}} \right) = {{{\pi ^3}} \over {64}} + {\left( {{\pi \over 2} - {\pi \over 4}} \right)^3} = {{{\pi ^3}} \over {32}}$$
$$f\left( { - {\pi \over 2}} \right) = - {{{\pi ^3}} \over 8} + {\pi ^3}$$
$$ = {{7{\pi ^3}} \over 8}$$
$$\therefore$$ $$k{\pi ^3} \in \left[ {{{{\pi ^3}} \over {32}},\,{{7{\pi ^3}} \over 8}} \right)$$
$$ \Rightarrow k \in \left[ {{1 \over {32}},\,{7 \over 8}} \right)$$
Comments (0)
