JEE MAIN - Mathematics (2022 - 24th June Morning Shift - No. 5)
The number of values of $$\alpha$$ for which the system of equations :
x + y + z = $$\alpha$$
$$\alpha$$x + 2$$\alpha$$y + 3z = $$-$$1
x + 3$$\alpha$$y + 5z = 4
is inconsistent, is
0
1
2
3
Explanation
$\Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ \alpha & 2 \alpha & 3 \\ 1 & 3 \alpha & 5\end{array}\right|$
$$ \begin{aligned} &=1(10 \alpha-9 \alpha)-1(5 \alpha-3)+1\left(3 \alpha^{2}-2 \alpha\right) \\\\ &=\alpha-5 \alpha+3+3 \alpha^{2}-2 \alpha \\\\ &=3 \alpha^{2}-6 \alpha+3 \end{aligned} $$
For inconsistency $\Delta=0$ i.e. $\alpha=1$
Now check for $\alpha=1$
$$ x+y+z=1\quad\quad...(i) $$
$x+2 y+3 z=-1\quad\quad...(ii)$
$x+3 y+5 z=4\quad\quad...(iii)$
By (ii) $\times 2-$ (i) $\times 1$
$$ x+3 y+5 z=-3 $$
so equations are inconsistent for $\alpha=1$
$$ \begin{aligned} &=1(10 \alpha-9 \alpha)-1(5 \alpha-3)+1\left(3 \alpha^{2}-2 \alpha\right) \\\\ &=\alpha-5 \alpha+3+3 \alpha^{2}-2 \alpha \\\\ &=3 \alpha^{2}-6 \alpha+3 \end{aligned} $$
For inconsistency $\Delta=0$ i.e. $\alpha=1$
Now check for $\alpha=1$
$$ x+y+z=1\quad\quad...(i) $$
$x+2 y+3 z=-1\quad\quad...(ii)$
$x+3 y+5 z=4\quad\quad...(iii)$
By (ii) $\times 2-$ (i) $\times 1$
$$ x+3 y+5 z=-3 $$
so equations are inconsistent for $\alpha=1$
Comments (0)
