JEE MAIN - Mathematics (2022 - 24th June Morning Shift - No. 3)
Explanation
We know,
Surface area of balloon (s) = 4$$\pi$$r2
$$\therefore$$ $${{ds} \over {dt}} = {d \over {dt}}(4\pi {r^2})$$
$$ \Rightarrow {{ds} \over {dt}} = 4\pi (2r) \times {{dr} \over {dt}}$$
$$ \Rightarrow {{ds} \over {dt}} = 8\pi r \times {{dr} \over {dt}}$$
Given that, surface area of balloon is increasing in constant rate.
$$\therefore$$ $${{ds} \over {dt}}$$ = constant = k (Assume)
$$ \Rightarrow k = 8\pi r\,.\,{{dr} \over {dt}}$$
$$ \Rightarrow \int {k\,dt = \int {8\pi r\,dr} } $$
$$ \Rightarrow kt = 8\pi \times {{{r^2}} \over 2} + c$$
$$ \Rightarrow kt = 4\pi {r^2} + c$$ ..... (1)
Given at t = 0, radius r = 3
So, $$0 = 4\pi ({3^2}) + c$$
$$ \Rightarrow c = - 36\pi $$
$$\therefore$$ Equation (1) becomes
$$kt = 4\pi {r^2} - 36\pi $$
Also given, at t = 5, radius r = 7
$$\therefore$$ $$k(5) = 4\pi {(7)^2} - 36$$
$$ \Rightarrow k = 32\pi $$
$$\therefore$$ Equation (1) is
$$32\pi t = 4\pi {r^2} - 36\pi $$
Now at $$t = 9$$
$$ \Rightarrow 32\pi (9) = 4\pi {r^2} - 36\pi $$
$$ \Rightarrow 8 \times 9 = {r^2} - 9$$
$$ \Rightarrow {r^2} = 81 \Rightarrow r = 9$$
Comments (0)
