JEE MAIN - Mathematics (2022 - 24th June Morning Shift - No. 10)
If $$\{ {a_i}\} _{i = 1}^n$$, where n is an even integer, is an arithmetic progression with common difference 1, and $$\sum\limits_{i = 1}^n {{a_i} = 192} ,\,\sum\limits_{i = 1}^{n/2} {{a_{2i}} = 120} $$, then n is equal to :
48
96
92
104
Explanation
$$\sum\limits_{i = 1}^n {{a_i} = 192} $$
$$\Rightarrow$$ a1 + a2 + a3 + ...... + an = 192
$$ \Rightarrow {n \over 2}[{a_1} + {a_n}] = 192$$
$$ \Rightarrow {a_1} + {a_n} = {{384} \over n}$$ ..... (1)
Now, $$\sum\limits_{i = 1}^{{n \over 2}} {{a_{2i}} = 120} $$
$$\Rightarrow$$ a2 + a4 + a6 + ...... + an = 120
Here total $${n \over 2}$$ terms present.
$$\therefore$$ $${{{n \over 2}} \over 2}[{a_2} + {a_n}] = 120$$
$$ \Rightarrow {n \over 4}[{a_1} + 1 + {a_n}] = 120$$
$$ \Rightarrow {a_1} + {a_n} + 1 = {{480} \over n}$$ ..... (2)
Subtracting (1) from (2), we get
$$1 = {{480} \over n} - {{384} \over n}$$
$$ \Rightarrow 1 = {{96} \over n}$$
$$\Rightarrow$$ n = 96
Comments (0)
