JEE MAIN - Mathematics (2022 - 24th June Morning Shift - No. 1)
Let $$A = \{ z \in C:1 \le |z - (1 + i)| \le 2\} $$
and $$B = \{ z \in A:|z - (1 - i)| = 1\} $$. Then, B :
Explanation
Let, $$z = x + iy$$
Given, $$1 \le \left| {z - (1 + i)} \right| \le 2$$
$$ \Rightarrow 1 \le \left| {x + iy - 1 - i} \right| \le 2$$
$$ \Rightarrow 1 \le \left| {(x - 1) + i(y - 1)} \right| \le 2$$
$$ \Rightarrow 1 \le \sqrt {{{(x - 1)}^2} + {{(y - 1)}^2}} \le 2$$
It represent two concentric circle both have center at (1, 1) and radius 1 and 2.
Also given,
$$\left| {z - (1 - i)} \right| = 1$$
$$ \Rightarrow \left| {x + iy - 1 + i} \right| = 1$$
$$ \Rightarrow \left| {(x - 1) + i(y + 1)} \right| = 1$$
$$ \Rightarrow \sqrt {{{(x - 1)}^2} + {{(y + 1)}^2}} = 1$$
This represent a circle with center at (1, $$-$$1) and radius = 1.
In the common region infinite values of B possible.
Comments (0)
