JEE MAIN - Mathematics (2022 - 24th June Evening Shift - No. 4)
Let x, y > 0. If x3y2 = 215, then the least value of 3x + 2y is
30
32
36
40
Explanation
x, y > 0 and x3y2 = 215
Now, 3x + 2y = (x + x + x) + (y + y)
So, by A.M $$\ge$$ G.M inequality
$${{3x + 2y} \over 5} \ge \root 5 \of {{x^3}\,.\,{y^2}} $$
$$\therefore$$ $$3x + 2y \ge 5\root 5 \of {{2^{15}}} \ge 40$$
$$\therefore$$ Least value of $$3x + 4y = 40$$
Comments (0)
