JEE MAIN - Mathematics (2022 - 24th June Evening Shift - No. 2)
The sum of all the real roots of the equation
$$({e^{2x}} - 4)(6{e^{2x}} - 5{e^x} + 1) = 0$$ is
$$({e^{2x}} - 4)(6{e^{2x}} - 5{e^x} + 1) = 0$$ is
$${\log _e}3$$
$$ - {\log _e}3$$
$${\log _e}6$$
$$ - {\log _e}6$$
Explanation
$$({e^{2x}} - 4)(6{e^{2x}} - 5{e^x} + 1) = 0$$
Let $${e^x} = t$$
$$\therefore$$ $$({t^2} - 4)(6{t^2} - 5t + 1) = 0$$
$$ \Rightarrow ({t^2} - 4)(2t - 1)(3t - 1) = 0$$
$$\therefore$$ t = 2, $$-$$2, $${1 \over 2}$$, $${1 \over 3}$$
$$\therefore$$ $${e^x} = 2 \Rightarrow x = \ln 2$$
$${e^x} = - 2$$ (not possible)
$${e^x} = {1 \over 2} \Rightarrow x = - \ln 2$$
$${e^x} = {1 \over 3} \Rightarrow x = - \ln 3$$
$$\therefore$$ Sum of all real roots
$$ = \ln 2 - \ln 2 - \ln 3$$
$$ = - \ln 3$$
Comments (0)
