JEE MAIN - Mathematics (2021 - 31st August Morning Shift - No. 3)

Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two vectors
such that $$\left| {2\overrightarrow a + 3\overrightarrow b } \right| = \left| {3\overrightarrow a + \overrightarrow b } \right|$$ and the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is 60$$^\circ$$. If $${1 \over 8}\overrightarrow a $$ is a unit vector, then $$\left| {\overrightarrow b } \right|$$ is equal to :
4
6
5
8

Explanation

$${\left| {3\overrightarrow a + \overrightarrow b } \right|^2} = {\left| {2\overrightarrow a + 3\overrightarrow b } \right|^2}$$

$$\left( {3\overrightarrow a + \overrightarrow b } \right).\left( {3\overrightarrow a + \overrightarrow b } \right) = \left( {2\overrightarrow a + 3\overrightarrow b } \right).\left( {2\overrightarrow a + 3\overrightarrow b } \right)$$

$$9\overrightarrow a .\,\overrightarrow a + 6\overrightarrow a \,.\,\overrightarrow b + \overrightarrow b \,.\,\overrightarrow b = 4\overrightarrow a \,.\,\overrightarrow a + 12\overrightarrow a \,.\,\overrightarrow b + 9\overrightarrow b \,.\,\overrightarrow b $$

$$5{\left| {\overrightarrow a } \right|^2} - 6\overrightarrow a \,.\,\overrightarrow b = 8{\left| {\overrightarrow b } \right|^2}$$

$$5{(8)^2} - 6.8\,.\,\left| {\overrightarrow b } \right|\cos 60^\circ = 8{\left| {\overrightarrow b } \right|^2}$$ $$\because$$ $$\left( \matrix{ {1 \over 8}\left| {\overrightarrow a } \right| = 1 \hfill \cr \Rightarrow \left| {\overrightarrow a } \right| = 8 \hfill \cr} \right)$$

$$40 - 3\left| {\overrightarrow b } \right| = {\left| {\overrightarrow b } \right|^2}$$

$$ \Rightarrow {\left| {\overrightarrow b } \right|^2} + 3\left| {\overrightarrow b } \right| - 40 = 0$$

$$\left| {\overrightarrow b } \right| = - 8$$, $$\left| {\overrightarrow b } \right| = 5$$

(rejected)

Comments (0)

Advertisement