JEE MAIN - Mathematics (2021 - 31st August Morning Shift - No. 16)

Let [t] denote the greatest integer $$\le$$ t. Then the value of

$$8.\int\limits_{ - {1 \over 2}}^1 {([2x] + |x|)dx} $$ is ___________.
Answer
5

Explanation

$$I = \,\int\limits_{ - {1 \over 2}}^1 {([2x] + |x|)dx} $$

$$ = \int\limits_{ - 1/2}^1 {[2x]\,dx + \int\limits_{ - 1/2}^1 {|x|\,} dx} $$

$$ = 0 + \int\limits_{ - 1/2}^0 {( - x)\,} dx + \int\limits_0^1 {x\,} dx$$

$$ = \left( { - {{{x^2}} \over 2}} \right)_{ - 1/2}^0 + \left( {{{{x^2}} \over 2}} \right)_0^1$$

$$ = \left( {0 + {1 \over 8}} \right) + {1 \over 2}$$

$$ = {5 \over 8}$$

$$ \therefore $$ 8I = 5

Comments (0)

Advertisement