JEE MAIN - Mathematics (2021 - 31st August Morning Shift - No. 13)
If $${{dy} \over {dx}} = {{{2^{x + y}} - {2^x}} \over {{2^y}}}$$, y(0) = 1, then y(1) is equal to :
log2(2 + e)
log2(1 + e)
log2(2e)
log2(1 + e2)
Explanation
$${{dy} \over {dx}} = {{{2^{x + y}} - {2^x}} \over {{2^y}}}$$
$${2^y}{{dy} \over {dx}} = {2^x}({2^y} - 1)$$
$$\int {{{{2^y}} \over {{2^y} - 1}}dy = \int {{2^x}\,dx} } $$
$${{\ln ({2^y} - 1)} \over {\ln 2}} = {{{2^x}} \over {\ln 2}} + C$$
$$ \Rightarrow {\log _2}({2^y} - 1) = {2^x}{\log _2}e + C$$
$$\because$$ $$y(0) = 1 \Rightarrow 0 = {\log _2}e + C$$
$$C = - {\log _2}e$$
$$ \Rightarrow {\log _2}({2^y} - 1) = ({2^x} - 1){\log _2}e$$
put x = 1, $${\log _2}({2^y} - 1) = {\log _2}e$$
2y = e + 1
y = log2(e + 1) Ans.
$${2^y}{{dy} \over {dx}} = {2^x}({2^y} - 1)$$
$$\int {{{{2^y}} \over {{2^y} - 1}}dy = \int {{2^x}\,dx} } $$
$${{\ln ({2^y} - 1)} \over {\ln 2}} = {{{2^x}} \over {\ln 2}} + C$$
$$ \Rightarrow {\log _2}({2^y} - 1) = {2^x}{\log _2}e + C$$
$$\because$$ $$y(0) = 1 \Rightarrow 0 = {\log _2}e + C$$
$$C = - {\log _2}e$$
$$ \Rightarrow {\log _2}({2^y} - 1) = ({2^x} - 1){\log _2}e$$
put x = 1, $${\log _2}({2^y} - 1) = {\log _2}e$$
2y = e + 1
y = log2(e + 1) Ans.
Comments (0)
