JEE MAIN - Mathematics (2021 - 31st August Morning Shift - No. 12)

If the function
$$f(x) = \left\{ {\matrix{ {{1 \over x}{{\log }_e}\left( {{{1 + {x \over a}} \over {1 - {x \over b}}}} \right)} & , & {x < 0} \cr k & , & {x = 0} \cr {{{{{\cos }^2}x - {{\sin }^2}x - 1} \over {\sqrt {{x^2} + 1} - 1}}} & , & {x > 0} \cr } } \right.$$ is continuous

at x = 0, then $${1 \over a} + {1 \over b} + {4 \over k}$$ is equal to :
$$-$$5
5
$$-$$4
4

Explanation

If f(x) is continuous at x = 0, RHL = LHL = f(0)

$$\mathop {\lim }\limits_{x \to {0^ + }} f(x) = \mathop {\lim }\limits_{x \to {0^ + }} {{{{\cos }^2}x - {{\sin }^2}x - 1} \over {\sqrt {{x^2} + 1} - 1}}.{{\sqrt {{x^2} + 1} + 1} \over {\sqrt {{x^2} + 1} + 1}}$$ (Rationalisation)

$$\mathop {\lim }\limits_{x \to {0^ + }} - {{2{{\sin }^2}x} \over {{x^2}}}.\left( {\sqrt {{x^2} + 1} + 1} \right) = - 4$$

$$\mathop {\lim }\limits_{x \to {0^ - }} f(x) = \mathop {\lim }\limits_{x \to {0^ - }} {1 \over x}\ln \left( {{{1 + {x \over a}} \over {1 - {x \over b}}}} \right)$$

$$\mathop {\lim }\limits_{x \to {0^ - }} {{\ln \left( {1{x \over a}} \right)} \over {\left( {{x \over a}} \right).\,a}} + {{\ln \left( {1 - {x \over b}} \right)} \over {\left( { - {x \over b}} \right)\,.\,b}}$$$$ = {1 \over a} + {1 \over b}$$

So, $${1 \over a} + {1 \over b} = - 4 = k$$

$$ \Rightarrow {1 \over a} + {1 \over b} + {4 \over k} = - 4 - 1 = - 5$$

Comments (0)

Advertisement