JEE MAIN - Mathematics (2021 - 31st August Evening Shift - No. 5)

If $$\alpha = \mathop {\lim }\limits_{x \to {\pi \over 4}} {{{{\tan }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}}$$ and $$\beta = \mathop {\lim }\limits_{x \to 0 } {(\cos x)^{\cot x}}$$ are the roots of the equation, ax2 + bx $$-$$ 4 = 0, then the ordered pair (a, b) is :
(1, $$-$$3)
($$-$$1, 3)
($$-$$1, $$-$$3)
(1, 3)

Explanation

$$\alpha = \mathop {\lim }\limits_{x \to {\pi \over 4}} {{{{\tan }^3}x - \tan x} \over {\cos \left( {x + {\pi \over 4}} \right)}};{0 \over 0}$$ form

Using L Hospital rule

$$\alpha = \mathop {\lim }\limits_{x \to {\pi \over 4}} {{3{{\tan }^2}x{{\sec }^2}x - {{\sec }^2}x} \over { - \sin \left( {x + {\pi \over 4}} \right)}}$$

$$\alpha$$ = $$-$$4

$$\beta = \mathop {\lim }\limits_{x \to 0} {(\cos x)^{\cot x}} = {e^{\mathop {\lim }\limits_{x \to 0} {{(\cos x - 1)} \over {\tan x}}}}$$

$$\beta = {e^{\mathop {\lim }\limits_{x \to 0} {{ - (1 - \cos x)} \over {{x^2}}}.{{{x^2}} \over {{{\left( {{{\tan x} \over x}} \right)}^x}}}}}$$

$$\beta = {e^{\mathop {\lim }\limits_{x \to 0} \left( {{{ - 1} \over 2}} \right).{x \over 1}}} = {e^0} \Rightarrow \beta = 1$$

$$\alpha$$ = $$-$$4; $$\beta$$ = 1

If ax2 + bx $$-$$ 4 = 0 are the roots then

16a $$-$$ 4b $$-$$ 4 = 0 & a + b $$-$$ 4 = 0

$$\Rightarrow$$ a = 1 & b = 3

Comments (0)

Advertisement