JEE MAIN - Mathematics (2021 - 31st August Evening Shift - No. 2)

The domain of the function

$$f(x) = {\sin ^{ - 1}}\left( {{{3{x^2} + x - 1} \over {{{(x - 1)}^2}}}} \right) + {\cos ^{ - 1}}\left( {{{x - 1} \over {x + 1}}} \right)$$ is :
$$\left[ {0,{1 \over 4}} \right]$$
$$[ - 2,0] \cup \left[ {{1 \over 4},{1 \over 2}} \right]$$
$$\left[ {{1 \over 4},{1 \over 2}} \right] \cup \{ 0\} $$
$$\left[ {0,{1 \over 2}} \right]$$

Explanation

$$f(x) = {\sin ^{ - 1}}\left( {{{3{x^2} + x - 1} \over {{{(x - 1)}^2}}}} \right) + {\cos ^{ - 1}}\left( {{{x - 1} \over {x + 1}}} \right)$$

$$ - 1 \le {{x - 1} \over {x + 1}} \le 1 \Rightarrow 0 \le x < \infty $$ .... (1)

$$ - 1 \le {{3{x^2} + x - 1} \over {{{(x - 1)}^2}}} \le 1 \Rightarrow x \in \left[ {{{ - 1} \over 4},{1 \over 2}} \right] \cup \{ 0\} $$ .... (2)

(1) & (2)

$$\Rightarrow$$ Domain = $$\left[ {{1 \over 4},{1 \over 2}} \right] \cup \{ 0\} $$

Comments (0)

Advertisement